题目¶
原题地址:https://leetcode.com/problems/balance-a-binary-search-tree/
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
解法¶
先得到节点组成的有序数组,然后将有序数组转换为平衡二叉搜索树¶
先通过 中序遍历 将一个 BST 转换为一个有序数组,然后再用二分法把一个有序数组转换为一个平衡二叉树:
- 将数组从中间切分,
- 中间那个数是根节点,
- 左边的数组是左子节点构成的数组,
- 右边的数组是右子节点构成的数组,
- 按同样的方法切分左边数组和右边数组。
中序遍历的 Python 代码类似这样:
def inorder(root):
if root is None:
return
inorder(root.left)
# print(root)
inorder(root.right)
这个方法的 Python 代码类似下面这样:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def balanceBST(self, root):
self.nodes = []
self.inorder(root)
root = self.buildBST(self.nodes, 0, len(self.nodes) - 1)
return root
def buildBST(self, nodes, min_index, max_index):
if min_index > max_index:
return
mid_index = min_index + (max_index - min_index)/2
root = nodes[mid_index]
root.left = self.buildBST(nodes, min_index, mid_index - 1)
root.right = self.buildBST(nodes, mid_index + 1, max_index)
return root
def inorder(self, root):
if root is None:
return
self.inorder(root.left)
self.nodes.append(root)
self.inorder(root.right)
Comments