题目¶
原题地址:https://leetcode.com/problems/path-sum-iii/
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
解法¶
先限定 path 只能从 root 节点开始,这样的话, 按照 112. Path Sum 的思路, 相应的 Python 代码类似下面这样:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def __init__(self):
self._count = 0
def pathSum(self, root, target_sum):
self._preorder(root, target_sum)
return self._count
def _preorder(self, root, target_sum):
if root is None:
return 0
if root.val == target_sum:
self._count += 1
new_sum = target_sum - root.val
self._preorder(root.left, new_sum)
self._preorder(root.right, new_sum)
但是,因为题目中说了不仅限于从 root 开始: The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes). 所以,需要修改上面的代码,让每个节点都走一遍上面从 root 开始的查找过程。
这个思路的 Python 代码类似下面这样:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def __init__(self):
self._count = 0
def pathSum(self, root, target_sum):
if root is None:
return 0
self._preorder(root, target_sum)
self.pathSum(root.left, target_sum)
self.pathSum(root.right, target_sum)
return self._count
def _preorder(self, root, target_sum):
if root is None:
return 0
if root.val == target_sum:
self._count += 1
new_sum = target_sum - root.val
self._preorder(root.left, new_sum)
self._preorder(root.right, new_sum)
Comments